SEPARATION THEORY
Gas/Liquid Separation Theory

- **Liquid droplet settling**
 - Liquid drops separated from gas phase when its velocity reach terminal (settling) velocity
 - Terminal velocity when Drag Force = Buoyant Force
 - Drag Force depends on Drag Coefficient C_D

 - $Re < 10$ \[C_D = \frac{24}{Re} \]
 - $Re > 1000$ \[C_D = \frac{24}{Re} + \frac{3}{Re^{1/2}} + 0.34 \]
Terminal velocity equations for different conditions

- Re < 10
 \[V_t = \frac{1.78 \times 10^{-6} (\Delta S.G.) d_m^2}{\mu} \]

- Re > 1000
 \[V_t = 0.0199 \left[\frac{\rho_l - \rho_g}{\rho_g} \right]^{1/2} \left(\frac{d_m}{C_D} \right) \]

- The value of \(C_D \) is estimated and then used in the calculation of gas capacity constraint.
But in production facility, flow almost always has $\text{Re} > 1000$. So how to find C_D?

- Start with $\text{Re} \gg 1000$ so that $C_D \approx 0.34$
- Use $C_D = 0.34$ to calculate V_t
- Use V_t to calculate Re
- Use Re to calculate new C_D
- Repeat process until C_D values beginning to be the same
- Use this latest C_D value in the gas capacity equation…
Cont.

- **Liquid retention time**
 - Retention time is average time a liquid molecule is retained in vessel
 - To ensure liquid and gas reach equilibrium so that gas molecule can evolve from liquid phase
 - Retention time = \(\frac{\text{Volume of liquid storage in vessel}}{\text{Liquid flow rate}} \)
 - Usually 1 to 3 minutes
Oil/Water Separation Theory

- **Oil drop/water drop settling**
 - Flow around oil drops in water or water drops in oil is laminar – so water droplets fall at their terminal velocity

- **Oil/water retention time**
 - Need certain amount of oil storage so that oil reaches equilibrium, entrained gas liberated, and ‘free’ water coalesced to fall into water storage
 - Need certain amount of water storage for entrained large droplets of oil have time to coalesce and rise to oil-water interface
 - Retention time 3 – 30 minutes
SEPARATOR SIZING:
TWO-PHASE SEPARATOR
General sizing procedure

CALCULATE

1. Gas capacity constraint
 □ Minimum vessel diameter OR Relationship between diameter and effective length that satisfy gas capacity constraint

2. Liquid capacity
 □ Relationship between diameter and effective length OR height that satisfy liquid capacity constraint

3. Seam-to-seam length, \(L_{ss} \)
 □ For Gas capacity and Liquid capacity

4. Slenderness ratio
 □ For each \(L_{ss} \) calculated

SELECT reasonable vessel size (diameter and length)!
VERTICAL SEPARATOR

- **Seam-to-seam Length** L_{ss}
- **Diameter** d
- **Height** h
- **Gas outlet**
- **Mist extractor**
- **Inlet**
- **Liquid capacity**
- **Gas capacity**
- **Liquid Outlet**
Vertical separator sizing procedure

1. Determine C_D using iterative procedure

2. Calculate d for gas capacity constraint using

$$d^2 = 5040 \left[\frac{T Z Q_g}{P} \right] \left[\left(\frac{\rho_g}{\rho_l - \rho_g} \right) C_D \right]^{1/2}$$

3. Calculate $d^2 h$ for liquid capacity constraint

$$d^2 h = \frac{t_r Q_l}{0.12}$$
4. Set retention time t_r to be 1, 2 and 3 minutes (usual case)

5. For each t_r, calculate and tabulate values of
 a) d
 b) h
 c) L_{ss}
 - OD < 36” \rightarrow $L_{ss} = \frac{h + 76}{12}$
 - OD > 36” \rightarrow $L_{ss} = \frac{h + d_{min} + 40}{12}$
 d) Slenderness Ratio (SR), $(12)L_{ss}/d$
Cont. vertical

- From table, select possible choices of separator size (d x L_{ss}) based on the values of $\frac{(12)L_{ss}}{d}$
 - Select $(12)L_{ss}/d$ values range 3 – 4
 - d values must be greater than the calculated minimum vessel diameter for gas capacity constraint (Step 2)

- Your final selection should be based on your judgment on the costs of each possible separator
Example of separator selection

<table>
<thead>
<tr>
<th>t_r min</th>
<th>d in.</th>
<th>h in.</th>
<th>L_{in} ft</th>
<th>$\frac{[12]L_{\text{in}}}{d}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>24</td>
<td>86.8</td>
<td>13.6</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>38.6</td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>28.3</td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>21.7</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>9.4</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>57.9</td>
<td>11.2</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>37.0</td>
<td></td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>25.7</td>
<td></td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>18.9</td>
<td></td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>9.4</td>
<td></td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>7.9</td>
<td></td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>18.5</td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>12.9</td>
<td></td>
<td>2.5</td>
</tr>
</tbody>
</table>

Possible size:
- 36” x 10’
- 30” x 10’
- 30” x 10’ or 30” x 8’
HORIZONTAL SEPARATOR

Seam-to-seam Length L_{ss}

Diameter d

Gas capacity (50%)

Gas-oil interface

Effective Length L_{eff}

Liquid capacity (50%)

Inlet

Liquid Outlet

Gas outlet

Gas molecule flowing at average gas velocity, V_g

Liquid droplet dropping at settling velocity V_t relative to gas phase
Horizontal separator sizing procedure

1. Determine C_D using iterative procedure

2. Calculate dL_{eff} for gas capacity constraint

\[
dL_{eff} = 420 \left(\frac{TZQ_g}{P} \right) \left[\left(\frac{\rho_g}{\rho_l - \rho_g} \right) C_D \right]^{1/2}
\]

3. Calculate d^2L_{eff} for liquid capacity constraint

\[
d^2L_{eff} = \frac{t_r Q_l}{0.7}
\]
4. Set retention time t_r to be 1, 2 and/or 3 minutes (usual case)

5. For each t_r, calculate and tabulate values of
 a) d
 b) L_{eff} for
 - $Gas \ capacity$ \rightarrow from equation Step 2
 - $Liquid \ capacity$ \rightarrow from equation Step 3
c) \(L_{ss} \) for
 - \textit{Gas Capacity} \(\Rightarrow \quad L_{ss} = L_{eff} + \frac{d}{12} \)

 - \textit{Liquid capacity} \(\Rightarrow \quad L_{ss} = \frac{4}{3} L_{eff} \)

d) Slenderness ratio (SR), \((12)\frac{L_{ss}}{d}\)
From table, compare the values of L_{eff} for each gas and liquid capacity that governs the design of the separator

- The one with larger required length governs

Then, select possible choices of separator size $(d \times L_{ss})$ based on the values of SR

- Select SR values range 3 – 5
- L_{ss} values selected are the one that governs the design
Example of separator selection

Use the liquid Lss values to select separator size

<table>
<thead>
<tr>
<th>t_r</th>
<th>d</th>
<th>Gas L_{eff}</th>
<th>Liquid L_{eff}</th>
<th>Gas L_{ss}</th>
<th>Liquid L_{ss}</th>
<th>SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>2.5</td>
<td>33.5</td>
<td></td>
<td>44.7</td>
<td></td>
<td>33.5</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>21.4</td>
<td></td>
<td>28.5</td>
<td></td>
<td>17.1</td>
</tr>
<tr>
<td>24</td>
<td>1.7</td>
<td>14.9</td>
<td></td>
<td>19.9</td>
<td></td>
<td>9.9</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>1.3</td>
<td>9.5</td>
<td>12.7</td>
<td></td>
<td>5.1</td>
</tr>
<tr>
<td>36</td>
<td>1.1</td>
<td>6.6</td>
<td>9.1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>0.9</td>
<td>4.9</td>
<td></td>
<td>7.4</td>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td>48</td>
<td>0.8</td>
<td>3.7</td>
<td></td>
<td>6.2</td>
<td></td>
<td>1.6</td>
</tr>
</tbody>
</table>

Use the liquid Lss values to select separator size

Possible size

36” X 10’

Liquid capacity constraint governs since it has the largest required length
That’s basically it.