PHOTOSYNTHESIS

Photosynthesis, importance of photosynthesis, structure and function of chloroplast, dark and light reaction, CO₂ fixation, C3,C4 and CAM, advantages of C4 pathway, photorespiration and its implications, Factors affecting photosynthesis.

Energy can not be produce or destroyed, it can only transformed from one form to another

The sun: main source of energy for life on earth

Light Energy Harvested by Plants & Other Photosynthetic Autotrophs

KIRTI VARDHAN, ACHF, NAU

Evolution of Photosynthesis

upper epidermis

protect internal tissues from mechanical damage and bacterial and fungal invasion

Cuticle

- a waxy layer
- prevent water loss from the leaf surface

mesophyll

palisade mesophyll

contains many cblumplarstells closely packed together

∴ absorb light more efficiently

irregular cells loosely packed together to leave numerous large air spaces

→allow rapid diffusion befsgachelsotopbaughobout phooteasynthesis

spongy mesophyll

same as upper epidermis except the cuticle is thinner

lower [}]epidermis

opening which allows gases to pass through it to go into or out of the leaf

guard cells control the size of stoma

vascular bundle (vein)

xylem

 to transport water and mineral salts towards the leaf

phloem

to transport
 organic
 substances
 away from the
 leaf

Upper epidermis and cuticle is transparent Allows most light to pass to photosynthetic mesophyll tissues

Palisade mesophyll cells are closely packed and contain many chloroplasts To carry out photosynthesis more efficiently

Spongy mesophyll cells are loosely packed with numerous large air spaces

To allow rapid diffusion of gases throughout the leaf

Numerous stomata on lower epidermis To allow rapid gaseous exchange with the atmosphere

Extensive vein system

- Allow sufficient water to reach the cells in the leaf
- To carry food away from them to other parts of the plant

Leaf

Plant Cell Chloroplast Structure

(A) Section of chloroplast showing internal structure

(D) Transfer of light energy by accessory pigment molecules to chl-a

Granum (Entire)

Granum (In section)

(B) Structure of Granum

Function of chloroplast:

Photosynthesis

The chlorophyll molecules in the chloroplasts are essential in the process of photosynthesis.

Protein Synthesis

Chloroplasts are capable of doing Protein Synthesis.

Carriers of Heredity Characters

Chloroplasts have a limited role in cytoplasmic inheritance since these contain traces of DNA.

Chlorophyll

Chlorophyll is the molecule that traps this 'most elusive of all powers' - photoreceptor.

It is found in the chloroplasts of green plants,

The basic structure of a chlorophyll molecule is a porphyrin ring, co-ordinated to a central atom.

This is very similar in structure to the heme group found in hemoglobin,

except that in heme the central atom is iron, whereas in chlorophyll it is magnesium.

The structure of chlorophyll

Organism	Chlorophylls				Bacteriochlorophylls							
	a	b	c	d	a	b	c	d	е	g	Carotenoids	Phycobiliproteins
Eukaryotes												
Mosses, ferns, seed plants	+	+	-	-							+	-
Green algae	+	+	-	-							+	-
Euglenoids	+	+	-	-							+	-
Diatoms	+	-	+	-							+	-
Dinoflagellates	+	-	+	-							+	-
Brown algae	+	-	+	-							+	-
Red algae	+	-	-	+							+	+
Prokaryotes												
Cyanobacteria	+	-	-	+							+	+
Prochlorophytes	+	+	-	-							+	-
Sulfur purple bacteria					+0	r +	-	-	-	-	+	-
Nonsulfur purple bacteria					+0	r +	-	-	-	-	+	-
Green bacteria					+	-	+0	r + o	r +	-	+	-
Heliobacteria					-	-	-	-	-	+	+	-

KIRTI VARDHAN, ACHF, NAU

Wavelength of light (nanometers)

Photosynthesis Mechanism:

PHOTOSYNTHESIS

Solar energy to Chemical energy

Oxidation – Reduction process

Evidence of Light and Dark reaction:

Temperature coefficient

Intermittent light

Tracer technique

Red drop

sharp decrease in quantum yield at wavelength greater than 680 nm, in the red part of the spectrum, the phenomenon was called as *red drop*

Emerson enhancement effect inefficient far-red light beyond 680 nm could be made fully efficient if supplemented with RED light

LIGHT REACTION

Production of Assimilatory Powers (ATP and NADPH) by light, water and pigments

- 1. Absorption of light energy by the pigments
- 2. Activation of Chlorophyll molecule
- 3. Photolysis of water
- 4. Electron Transport Chain
- 5. Synthesis of Assimilatory Powers

Absorption of Light Energy

All pigments – Absorb – Light Energy – Transfer to – Chlorophyll a

Chlorophyll a – Absorb and Conversion – To Chemical Energy

Absorption of light energy by chloroplast pigments

Different chloroplast pigments absorb light in different regions of the visible part of the spectrum

Transfer of light energy from accessory pigments to chlorophyll *a*

What happens when chlorophyll absorbs light?

The chlorophyll molecule becomes excited (this takes only 10⁻¹⁵ sec = fempto sec) and an electron moves to an outer energy level.

CHL (ground state) → CHL* (excited state)

Electrons don't stay excited long (10⁻⁹ sec), because they either:

return to the ground state and release their absorbed energy as heat (thermal deactivation);

return to ground state and release their extra energy as light (fluorescence);

transfer their energy to another molecule; kind of like hitting pool balls (resonance transfer); or be used in a photochemical reaction (photochemistry).

Activation of chlorophyll molecule by photon of light

Photosystem:

Two physically and chemically distinct photosystems (I and II), each with its own antenna pigments and photochemical reaction center. The two photosystems are linked by an electron transport chain

PSI PSII

Is located on the outer surface of non appressed parts of grana thylakoids.	Is located on the inner surface of appressed parts of grana thylakoids.				
Comprises of about 200 - 400 chlorophylls, 50 carotenoids, one molecules of P ₇₀₀	Comprises of about 200 chlorophylls, 50 carotenoids, one molecules of P ₆₈₀				
Is light green in colour	Is dark green in colour				
Is not directly involved with photooxidation of H ₂ O and evolution of molecules of O ₂	•				

How the Light Reactions Generate ATP and NADPH

Cyclic Photophosphorylation

- Process for ATP generation associated with some Photosynthetic Bacteria
- Reaction Center => 700 nm

Cyclic photophosphorylation

Noncyclic Photophosphorylation

 Photosystem II regains electrons by splitting water, leaving O₂ gas as a by-product

In the light reactions, electron transport chains generate ATP, NADPH, & O₂

- Two connected photosystems collect photons of light and transfer the energy to chlorophyll electrons
- The excited electrons are passed from the primary electron acceptor to electron transport chains
 - Their energy ends up in ATP and NADPH

Chemiosmosis powers ATP synthesis in the light reactions

- The electron transport chains are arranged with the photosystems in the thylakoid membranes and pump H⁺ through that membrane
 - The flow of H⁺ back through the membrane is harnessed by ATP synthase to make ATP
 - In the stroma, the H⁺ ions combine with NADP⁺ to form NADPH

DARK REACTION

Reduction of CO₂ to Carbohydrate by utilizing Assimilatory Powers (ATP and NADPH₂) Produced by Light Reaction

C₃ PATHWAY
CALVIN CYCLE
REDUCTIVE PENTOSE
PHOSPHATE [RPP] CYCLE

C₄ Pathway Hatch and Slack Cycle

CAM Pathway

Calvin cycle or C3 cycle

Calvin cycle was first observed by Melvin Calvin in chlorella

Calvin was awarded Nobel Prize for this work in 1961

It is a cyclic reaction occurring in the dark phase of photosynthesis

 CO_2 is converted into sugars and it is a process of carbon fixation

First stable compound in Calvin cycle is a 3 carbon compound (3 phosphoglyceric acid)

cycle is also called as C3 cycle

Glucose and KIRTI VAR Othe Associate, NAU

ATP is used as a source of energy, and NADPH donates high-energy electrons.

Synthesis of carbohydrate

Ribulose 1,5 diphosphate + CO2+H2O \rightarrow 3 Phosphoglyceric acid (2 molecule)

Rubisco

3 PGA + NADPH + H → 3 Phosphoglyceral aldehyde

ATP + Triose phosphate dehydrogenase

3 Phosphoglyceral aldehyde ←→ Dihydroxy acetone phosphate

Triose phosphate isomerase

- 3 Phosphoglyceral aldehyde → Fructose 1,6 diphosphate
- + Dihydroxy acetone phosphate

Aldolase

Regeneration of Ribulose diphosphate

Fructose 6 phosphate + 3 Phosphoglyceraldehyde > Erythrose 4 phosphate + Xylose-5- phosphate

Transketolasec

Erythrose 4 phosphate + Dihydroxy acetone phosphate

Aldolase

Sedoheptulose 1, 7 diphosphate

Phosphatase

Sedoheptulose 7 diphosphate

3 Phosphoglyceraldehyde

Transketolase

Xylose 5 phosphate + Ribose 5 Phosphate

Phosphopentose isomerase

Ribulose 5 phosphate + ATP

Phosphopentokinase

Ribulose, 1, 5 diphosphate

Photorespiration

High light intensity

Low CO2, High O2

C4 cycle/ Hatch and Slack / C4 dicarboxylic acid pathway

It is the alternate pathway of C3 cycle to fix CO2

first formed stable compound 4 carbon oxaloacetic acid

Enzyme - PEP corboxylase

different type of leaf anatomy- chloroplasts are dimorphic in nature

vascular bundles are surrounded by bundle sheath of larger parenchymatous cells have chloroplasts

chloroplasts of bundle sheath are larger, lack grana

peculiar anatomy of leaves of C4 plants is called Kranz anatomy

Eg: sugar cane, maize, sorghum and amaranthus

C₄ cycle consists of four stages

- Fixation of CO2 by the carboxylation of phosphoenolpyruvate in the mesophyll cells to form a C4 acid (malate and/or aspartate)
- 2. Transportation of the C4 acids to the bundle sheath cells
- Decarboxylation of the C4 acids within the bundle sheath cells and generation of CO2, which is then reduced to carbohydrate via Calvin cycle
- 4. Transport of the C3 acid (pyruvate or alanine) that is formed by the decarboxylation step back to the mesophyll cell and regeneration of the CO2 acceptor phosphoenolpyruvate

C₃ leaf

C₄ leaf

THE C4 PATHWAY

Structural specification of C4 plants:

Dimorphism of chloroplast

Kranz anatomy

Differences b/w C3 and C4 Plants

CO2 acceptor and stable product

Efficiency of CO2 absorption (CO2 compensation point)

Type of chloroplast

Calvin cycle enzymes

Light saturation point

Photorespiration

Optimum temp.

Biological Significance of C4 plants

Photosynthesis in low CO₂

Xeric condition – partial stomatal closure

Absence of photorespiration, higher fixation

CAM(Crassulation acid metabolism) Fixation

SUGARCANE

PINEAPPLE

MESOPHYLL CELL

BUNDLE-SHEATH CELL

Step 1: CO₂ incorporated into four-carbon organic acids

Step 2: Organic acids release CO₂ to Calvin cycle

CAM Photosynthesis

	С3	C4	CAM
Leaf anatomy	no distinct bundle sheath	Kranz anatomy	Usually no palisade cells, large vacuoles
Initial carboxylating enzyme	rubisco	PEPcase	PEPcase
Product of CO ₂ fixation	PGA (C3)	OAA (C4)	OAA (C4)
Chloroplasts	one type	dimorphic	one type
Theoretical energy requirements (CO ₂ : ATP: NADPH)	1: 3: 2	1:5:2	1: 6.5: 2
Transpiration ratio (g H ₂ O/g dry wt)	450-950	250-350	18-125
Photosynthesis rate (mg CO ₂ fixed dm ⁻² h ⁻¹)	15 - 30	40 - 80	(low)
Carbon dioxide compensation point (ppm)	50 - 150 (Hi)	0-10 (low)	0-5 (in dark)
Response to light	Light saturation easily achieved	No light saturation	-
Photosynthesis inhibited by oxygen?	Yes	No	Yes
Temperature optimum for photosynthesis	15-25kirti vardhan, achf, na	а 30-47	35

Factor affecting photosynthesis:

Internal factor: Chlorophyll

Leaf resistance

Demand for photosynthates

Genotype

convert into starch for storage

change into sucrose and is transported to other parts through phloem

KIRTI VARDHAN, ACHF, NAU

External Factor: CO₂

External Factor: Light

External Factor:

Temperature

Water

Nutrient

Thank You